"Everything is related to everything else, but near things are more related than distant things"
Abstract
Land use and land cover (LULC) data analyses disclosed large land conversion in Shelby County, TN, between 1990 and 2010. LULC mixtures have significant associations with socio-demographics and travel behavior. Mathematical modeling is used to forecast urban expansion in order to promote sustainable development.
Cellular automata (CA) is a popular approach for the simulation of urban growth. Nevertheless, precise calibration of CA is challenging due to uncertainties and its knowledge-intensive process.
Shannon relative indices (SRIs) have been used in this study as an indicator of land patterns to calibrate a CA model of urban growth in Shelby County. The results of using a Genetic Algorithm (GA) indicate that including patterns in the calibration improves the simulations’ accuracy (from 93.21% to 94.84%).
Furthermore, an Imperialistic Competitive Algorithm (ICA) was implemented for the first time in the field of urban planning to calibrate the CA model of urban growth. Two alternatives including total disagreement and the Kappa coefficient have been separately implemented in the cost function of ICA. The findings indicate that the Kappa coefficient achieves higher overall accuracy in ICA, compared with the total disagreement (93.86% vs 92.37%). Moreover, adding patterns to the Kappa coefficient improves overall accuracy and increases the maximum (from 93.86% to 94.65%), the mean (from 79.76% to 81.11%), and the median (from 79.97% to 82.54%) of simulations’ accuracy. The pattern-based calibration resulted in a more realistic simulation of urban growth of over 9.49 sq. km of land in Shelby County (in comparison with the simulation without adding patterns). The results also demonstrated that ICA surpasses logistic regression (LR). While LR's overall accuracy was 92.98%, ICA's was 94.88% with patterns added, 94.40% using the Kappa coefficient alone, and 94.03% using the total disagreement. Using ICA and including patterns resulted in a correct simulation of urban growth of over 37.56 sq. km of land in Shelby County (in comparison with when an LR is used).
Urban planners can utilize these findings to more accurately forecast urban growth while construction companies, transportation engineers, tax assessors, and utility providers will all benefit from accurately modeled urban land.
Simulated urban growth in Shelby County, TN, using Cellular Automata (CA) and Imperialistic Competitive Algorithm (ICA) Ehsan Momeni
How to cite in APA:
Momeni, E. (2022). Optimizing pattern-based calibration of Cellular Automata by Imperialistic Competitive Algorithm (Publication No. 2022.29065262) [Doctoral dissertation, University of Memphis]. ProQuest Dissertations and Theses database. https://www.proquest.com/openview/403da7c297f7d20cabaf4615ab00c1dd/1?pq-origsite=gscholar&cbl=18750&diss=y
References
-
A Brief History of Shelby County. (2020). Shelby County, Tennessee, Mayor Lee Harris.Retrieved from https://www.shelbycountytn.gov/1264/A-Brief-History-of-Shelby-County
-
Abdi, B., Mozafari, H., Ayob, A., & Kohandel, R. (2011). Imperialist competitive algorithm and its application in optimization of laminated composite structures. European Journal of Scientific Research, 55(2), 174–187.
-
Aburas, M. M., Abdullah, S. H. O., Ramli, M. F., & Asha’ari, Z. H. (2017). Land Suitability Analysis of Urban Growth in Seremban Malaysia, Using GIS Based Analytical Hierarchy Process. Procedia Engineering, 198, 1128–1136. https://doi.org/10.1016/J.PROENG.2017.07.155
-
Afshar, M. H., & Shahidi, M. (2009). Optimal solution of large-scale reservoir-operation problems: Cellular-automata versus heuristic-search methods. Engineering Optimization, 41(3), 275-293. DOI: 10.1080/03052150802441273
-
Aghdam, F. H., & Hagh, M. T. (2019). Security Constrained Unit Commitment (SCUC)formulation and its solving with Modified Imperialist Competitive Algorithm (MICA). Journal of King Saud University - Engineering Sciences, 31(3), 253–261. https://doi.org/10.1016/j.jksues.2017.08.003
-
Ahmadi, M. A., & Chen, Z. (2019). Comparison of machine learning methods for estimating permeability and porosity of oil reservoirs via petro-physical logs. Petroleum, 5(3), 271–284. https://doi.org/10.1016/j.petlm.2018.06.002
-
Aithal, B. H., Shivamurthy, V., & Ramachandra, T. V. (2017). Characterization and Visualization of Spatial Patterns of Urbanisation and Sprawl through Metrics and Modeling. Cities and the Environment (CATE), 10(1), 1–31.
-
Al-Darwish, Y., Ayad, H., Taha, D., & Saadallah, D. (2017). Predicting the future urban growth and it’s impacts on the surrounding environment using urban simulation models: Case study of Ibb city – Yemen. Alexandria Engineering Journal, 57(2018), 2887-2895. DOI: https://doi.org/10.1016/j.aej.2017.10.009
-
Ali Farzan, I. (2018). The Interplay Of Culture, Motivation, And Self: An Investigation Of Math Achievement Gap Between Middle School Students In The Us And Those In The Top-Performing Countries In East Asia (The University of Memphis). Retrieved from https://search.proquest.com/docview/2049687261
-
Allen, P. M. (1997). Cities and regions as evolutionary, complex systems. Journal of Geographical Systems, 4(1):103-130.
-
Anand, A. (2012). Unit 14: Accuracy Assessment. In Processing and Classification of Remotely Sensed Images (pp. 59–77). Retrieved from https://www.researchgate.net/publication/319963167_PROCESSING_AND_CLASSIFICATION_OF_REMOTELY_SENSED_IMAGES
-
Antipova, A., Momeni, E., & Banai, R. (2022a). Chapter 15: Urban Sprawl, Blight, and the COVID-19 Pandemic. In Chatterjee, U., Biswas, A., Mukherjee, J., Majumdar, S. (Ed.). Advances in Urbanism, Smart Cities, and Sustainability (pp.263-281). Publisher: Taylor & Francis Group/CRC Press. ISBN: 9780367641764. DOI: 10.1201/9781003126195-19
-
Antipova, A., Momeni, E., & Banai, R. (2022b). Chapter 17: Analysis of Urban Sprawl and Blight Using Shannon Entropy Index: A Case Study of Memphis, Tennessee. In Chatterjee, U., Biswas, A., Mukherjee, J., Majumdar, S. (Ed.). Advances in Urbanism, Smart Cities, and Sustainability (pp.299-322). Publisher: Taylor & Francis Group/CRC Press. ISBN: 9780367641764. DOI: 10.1201/9781003126195-21
-
Antipova, A., Wang, F., and Wilmot, C. (2011). Urban land uses, socio-demographic attributes and commuting: A multilevel modeling approach. Applied Geography, Vol. 31 (3): 1010-1018.
-
Araya, Y. H., & Cabral, P. (2010). Analysis and Modeling of Urban Land Cover Change in Setúbal and Sesimbra, Portugal. Remote Sensing, 2(6), 1549–1563. https://doi.org/10.3390/rs2061549
-
ArcGIS Desktop 2017 (Version 10.5.1) [Computer software]. New York, CA: Esri.
-
ArcGIS Pro. (2018). Compute Confusion Matrix. Retrieved from http://pro.arcgis.com/en/pro-app/tool-reference/spatial-analyst/compute-confusion-matrix.htm
-
ArcMap. (2022). Compute Confusion Matrix. Retrieved from https://desktop.arcgis.com/en/arcmap/latest/tools/spatial-analyst-toolbox/compute-confusion-matrix.htm
-
ArcMap. (2020). Retrieved from https://desktop.arcgis.com/en/arcmap/
-
Armaghani, D. J., Koopialipoor, M., Marto, A., & Yagiz, S. (2019). Application of several optimization techniques for estimating TBM advance rate in granitic rocks. Journal of Rock Mechanics and Geotechnical Engineering, 11(4), 779–789. https://doi.org/10.1016/j.jrmge.2019.01.002
-
Assessor of property. (2018). Retrieved from https://www.assessor.shelby.tn.us/content.aspx
-
Assessor of Property. (2020). Retrieved from https://www.assessor.shelby.tn.us/content.aspx
-
Atashpaz-Gargari, E., & Lucas, C. (2007). Imperialist Competitive Algorithm: An algorithm for optimization inspired by imperialistic competition. 2007 IEEE Congress on Evolutionary Computation, 4661–4667.
-
Azimi, G., Rahimi, A., Lee, M., & Jin, X. (2021). Mode choice behavior for access and egress connection to transit services. International Journal of Transportation Science and Technology, 10(2), 136–155. https://doi.org/10.1016/J.IJTST.2020.11.004
-
Banai, R., Antipova, A., & Momeni, E. (2021). Mapping the morphology of sprawl and blight: A note on entropy. GeoScape, 15(1), 1–18. https://doi.org/10.2478/GEOSC-2021-0001
-
Barreira-Gonza´lez, P., Aguilera-Benavente, F., & Go´mez-Delgado, M. (2019). Implementation and calibration of a new irregular cellular automata-based model for local urban growth simulation: The MUGICA model. Environment and Planning B: Urban Analytics and City Science, 46(2), 243–263. DOI: 10.1177/2399808317709280. (Original work published 2017)
-
Battelle. (2000). Travel patterns of people of color. Washington, D. C.: Federal Highway Administration. Retrieved from https://www.fhwa.dot.gov/ohim/trvpatns.pdf
-
Batty, M. (2009). Urban Modeling. In International Encyclopedia of Human Geography, Elsevier: Oxford, UK, 51-58.
-
Batty, M. (1997). Cellular automata and urban form: a primer. Journal of the American Planning Association, 63, 266-274.
-
Batty, M., Couclelis, H., & Eichen, M. (1997). Urban systems as cellular automata. Environment and Planning B, 24, 159-164.
-
Bauman, A., Reis, R., Sallis, J., Wells, J., Loos, R., & Martin, B. (2012). Correlates of physical activity: why are some people physically active and others not?. The Lancet, 380(9838), 258–271. DOI: 10.1016/S0140-6736(12)60735-1
-
Bell, M., Dean, C., & Blake, M. (2000). Forecasting the pattern of urban growth with PUP: a web-based model interfaced with GIS and 3D animation. Computers, Environment and Urban Systems, 24(6), 559–581. https://doi.org/https://doi.org/10.1016/S0198-9715(00)00017-X
-
Bharath, H. A., Chandan, M. C., Vinay, S., & Ramachandra, T. V. (2018). Modelling urban dynamics in rapidly urbanising Indian cities. Egyptian Journal of Remote Sensing and Space Science, 21(3), 201–210. https://doi.org/10.1016/j.ejrs.2017.08.002
-
Bicycle statistics: usage, production, sales, import, export. (2017). Retrieved from http://www.ibike.org/library/statistics-data.htm
-
Burgess, E. W. (1925). The growth of city: an introduction to a research project. The city, Eds. R. E. Park, E. W. Burgess and R. D. McKenzie, 47–62. Chicago: The University of Chicago Press. Retrieved from http://prelim2009.filmbulletin.org/readings/09-Urban/Burgess.pdf
-
Burrows, M., Burd, C., & Mckenzie, B. (2021). Commuting by Public Transportation in the United States: 2019 American Community Survey Reports. Retrieved from https://www.census.gov/content/dam/Census/library/publications/2021/acs/acs-48.pdf
-
Calthorpe, P., & Fulton, W. (2001). The Regional City: Planning for the End of Sprawl. In undefined. Retrieved from https://www.semanticscholar.org/paper/THE-REGIONAL-CITY%3A-PLANNING-FOR-THE-END-OF-SPRAWL.-Calthorpe-Fulton/2aa352d89570a33047266e96a48c1c81891066f1
-
Census Tracts and Block Numbering Areas (Chapter 10). (2018). In Geographic Areas Reference Manual (GARM) (pp. 1–17). Retrieved from https://www2.census.gov/geo/pdfs/reference/GARM/Ch10GARM.pdf
-
Cervero, R. (1996). Mixed land-uses and commuting: Evidence from the American Housing Survey. Transportation Research Part A: Policy and Practice, 30(5), 361-377. DOI: https://doi.org/10.1016/0965-8564(95)00033-X
-
Chatman, D., (2003). How Density and Mixed Use at the Workplace Affect Personal Commercial Travel and Commute Mode Choice. Los Angeles, CA: Department of Urban Planning, University of California. Retrieved from http://www.ced.berkeley.edu/downloads/pubs/faculty/chatman_2003_how-workplace-land-use-affects.pdf
-
Chaudhry, S. K., & Elumalai, S. P. (2020). Active and passive transport choice behavior for school students and their exposure to different transportation modes. Transportation Research Procedia, 48, 2916–2928. https://doi.org/10.1016/J.TRPRO.2020.08.191
-
Chaudhuri, G., & Clarke, K. (2013). The SLEUTH land use change model: A review. The International Journal of Environmental Resources Research, 1 (1), 88-104.
-
Chong, C. H. S. (2017). Comparison of Spatial Data Types for Urban Sprawl Analysis Using Shannon’s Entropy. Retrieved from https://spatial.usc.edu/wp-content/uploads/2017/02/Chong_Cora.pdf
-
Ciscel, D. H. (2000). Urban Sprawl, Urban Promise: A Case Study of Memphis, Tennessee. Community Affairs, The Federal Reserve Bank of St. Louis. Retrieved from https://www.researchgate.net/publication/237707324
-
Clark, H. M. (2017). Who Rides Public Transportation. Retrieved from https://www.apta.com/wp-content/uploads/Resources/resources/reportsandpublications/Documents/APTA-Who-Rides-Public-Transportation-2017.pdf
-
Clarke, K. C. (2008a). A Decade of Cellular Urban Modeling with SLEUTH: Unresolved Issues and Problems, Ch. 3 in Planning Support Systems for Cities and Regions (Ed. Brail, R. K., Lincoln Institute of Land Policy, Cambridge, MA, 47-60. Retrieved from https://pdfs.semanticscholar.org/b568/9b35214904d74cd3b5e41ff9bed6fcb47a83.pdf
-
Clarke, K. C. (2008b). Mapping and Modeling Land Use Change: an Application of the SLEUTH Model, In: Pettit, C., Cartwright, W., Bishop, I., Lowell, K., Pullar, D., Duncan, D. (Eds.), Landscape Analysis and Visualization: Spatial Models for Natural Resource Management and Planning, Springer, Berlin, pp. 353-366
-
Clarke, K. C., Gazulis, N., Dietzel, C. K., & Goldstein, N. C. (2007). A decade of SLEUTHing: Lessons learned from applications of a cellular automaton land use change model. In: Fisher, P. (Ed.), Classics from IJGIS: Twenty Years of the International Journal of Geographical Information Systems and Science, Taylor and Francis, CRC: Boca Raton, FL, 413-425.
-
Clarke-Lauer, M. D., & Clarke, K. C. (2011). Evolving Simulation Modeling : Calibrating SLEUTH Using a Genetic Algorithm. Proceedings of the 11th International Conference on GeoComputation, (January 2011), 25–29.
-
Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20(1), 37–46. doi:10.1177/001316446002000104A. Educational and Psychological Measurement, 20(1), 37–46. https://doi.org/10.1177/001316446002000104
-
Commission of the European communities. (2007). White paper on a strategy for Europe on nutrition, overweight and obesity-related health issues. Brussels: Commission of the European communities. Retrieved from http://ec.europa.eu/health/archive/ph_determinants/life_style/nutrition/documents/nutrition_wp_en.pdf
-
Congalton, R. G., & Green, K. (2009). Assessing the accuracy of remotely sensed data: principles and practices (Second Edition). Boca Raton, FL: CRC Press. ISBN 978-1-4200-5512-2
-
Congalton, R. G., Oderwald, R. G., & Mead, R. A. (1983). Assessing Landsat Classification Accuracy Using Discrete Multivariate Analysis Statistical Techniques. Photogrammetric Engineering And Remote Sensi, 49(12), 1671–1678. Retrieved from https://www.asprs.org/wp-content/uploads/pers/1983journal/dec/1983_dec_1671-1678.pdf
-
Congalton, R. G. (1981). The use of discrete multivariate analysis for the assessment of Landsat classification accuracy. Virginia Polytechnic Institute and State University, Blacksburg, VA.
-
Cramer, M. (2009). Soft Mobility. Measures for a climate-friendly transport policy in Europe. At: http://www.michael-cramer.eu/fileadmin/documents/2011_02_11_soft_mobility_en_web.pdf
-
Cushman & Wakefield. (2012). Memphis Region. Retrieved from: https://commadv.com/memphisregion
-
Dargay, J. M., & Hanly, M. (2003). The Impact of Land Use Patterns on Travel Behaviour. ESRC Transport Studies Unit, Centre for Transport Studies, University College London. Retrieved from https://www.researchgate.net/publication/228915810_The_Impact_of_land_use_patterns_on_travel_behaviour
-
Das, S., Boruah, A., Banerjee, A., Raoniar, R., Nama, S., & Maurya, A. K. (2021). Impact of COVID-19: A radical modal shift from public to private transport mode. Transport Policy, 109, 1-11. DOI: https://doi.org/10.1016/j.tranpol.2021.05.005
-
de Sá, T. H., Parra, D., & Monteiro, C. A. (2015). Impact of travel mode shift and trip distance on active and non-active transportation in the São Paulo Metropolitan Area in Brazil. Preventive Medicine Reports, Preventive Medicine Reports 2, 183–188. Retrieved from http://ees.elsevier.com/pmedr
-
de Vries, S. I., Hopman-Rock, M., & Bakker, I. (2010). Built Environmental Correlates of Walking and Cycling in Dutch Urban Children: Results from the SPACE Study. International Journal of Environmental Research and Public Health, 7(5): 2309–2324. DOI: 10.3390/ijerph7052309
-
Deb, K. (2004). Introduction to Genetic Algorithms for Engineering Optimization. https://doi.org/10.1007/978-3-540-39930-8_2
-
Deka, J., Tripathi, O. P., & Khan, M. L. (2012). Urban growth trend analysis using Shannon Entropy approach – A case study in North-East India. International Journal of Geomatics and Geosciences, 2(4), 1062–1068.
-
Department for Transport. (2011). Creating growth, cutting carbon: making sustainable local transport happen. Retrieved from https://www.gov.uk/government/publications/creating-growth-cutting-carbon-making-sustainable-local-transport-happen
-
Djemame, S. (2021). Training Cellular Automata with Extended Neighborhood for Edge Detection. ICCSA’2021: International Conference on Complex Systems and Applications, 1–14. Retrieved from http://ceur-ws.org/Vol-2904/14.pdf
-
Di Gregorio, S., & Festa, D. C. (1981). Cellular automata for freeway traffic. In Artificial Worlds and Urban Studies, Eds. E. Besussi and A. Cecchini, 365–92. Venice: DAEST., (September 1981).
-
DIVA-GIS. (2018). Retrieved from http://www.diva-gis.org/gdata
-
DIVA-GIS. (2020). DIVA-GIS. Retrieved from http://www.diva-gis.org/gdata
-
Duncan, M. J., Winkler, E., & Sugiyama, T. (2010). Relationships of Land Use Mix with Walking for Transport: Do Land Uses and Geographical Scale Matter? Urban Health, 87(5), 782–795. DOI: 10.1007/s11524-010-9488-7
-
Earth Explorer. (2018). Retrieved from https://earthexplorer.usgs.gov/
-
Earth Explorer. (2020). USGS. Retrieved from https://earthexplorer.usgs.gov/
-
Earth Science Learner. (2020). Logistic Regression. Matlab Central File Exchange. Retrieved from https://www.mathworks.com/matlabcentral/fileexchange/66161-logistic-regression
-
Elmaizi, A., Nhaila, H., Sarhrouni, E., Haouch, A., & Nacir, C. (2019). A novel information gain based approach for classification and dimensionality reduction of hyperspectral images. Procedia Computer Science, 148 (2019), 126–134. DOI: 10.1016/j.procs.2019.01.016
-
Ewing, R., & Cervero, R. (2010). Travel and the Built Environment: A Meta-Analysis. Journal of the American Planning Association, 76(3), 265-294. DOI: https://doi.org/10.1080/01944361003766766
-
Farg, E., Ramadan, M. N., & Arafat, S. M. (2019). Classification of some strategic crops in Egypt using multi remotely sensing sensors and time series analysis. The Egyptian Journal of Remote Sensing and Space Science, 22(3), 263-270. DOI: https://doi.org/10.1016/j.ejrs.2019.07.002
-
Feng, Y., & Tong, X. (2018). Calibration of cellular automata models using differential evolution to simulate present and future land use. Transactions in GIS, 22(2), 582-601. DOI: 10.1111/tgis.12331
-
Feng, Y., Liu, Y., Tong, X., Liu, M., & Deng, S. (2011). Modeling dynamic urban growth using cellular automata and particle swarm optimization rules. Landscape and Urban Planning, 102(3), 188–196. https://doi.org/10.1016/j.landurbplan.2011.04.004
-
Foody, G. M. (1992). On the Compensation for Chance Agreement in Image Classification Accuracy Assessment. Photogrammetric Engineering & Remote Sensing, 58(10), 1459–1460.
-
Foreman, D. I., & Corder, G. W. (2014). Nonparametric Statistics: A Step-by-Step Approach (2nd Editio). Wiley. ISBN: 9781118840313.
-
Fung, T., & LeDrew, E. (1988). The Determination of Optimal Threshold Levels for Change Detection Using Various Accuracy Indices. PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 54(10), 1449–1454. https://doi.org/0099-1112/88/5410-1449$02.25/0
-
Geographic terms and concepts - Census tract. (2017). Retrieved from https://www.census.gov/geo/reference/gtc/gtc_ct.html
-
Giuliano, G., & Dargay, J. (2006). Car ownership, travel and land use: a comparison of the US and Great Britain. Transportation Research, Part A: Policy and Practice, 40(2), 106-124. DOI: 10.1016/j.tra.2005.03.002
-
Graham, S., Lewis, B., Flanagan, B., Watson, M., & Peipins, L. (2015). Travel by public transit to mammography facilities in 6 US urban areas. Journal of Transport & Health, 2(4), 602-609
-
Grando, L., Fortunato, A., Izzi A., Giaretta, R., (2014). Diagnóstico da Mobilidade em um Campus Universitário: o Caso da UFSC- Trindade. Brazil: Universidade Federal de Santa Catarina
-
Guan, C. H., & Rowe, P. G. (2016). Should big cities grow? Scenario-based cellular automata urban growth modeling and policy applications. Journal of Urban Management, 5(2), 65–78. https://doi.org/10.1016/j.jum.2017.01.002
-
Guo, Y., Walters, G. A., Khu, S. T., & Keedwell, E. (2007). A novel cellular automata based approach to storm sewer design. Engineering Optimization, 39(3), 345-364. DOI: 10.1080/03052150601128261
-
Harris, C. D., & Ullman, E. L. (1945). The nature of cities. Annals of the American Academy of Political and Social Sciences, 242(1), 7–17. DOI: 10.1177/000271624524200103
-
Heinonen, T., & Pukkala, T. (2007). The use of cellular automaton approach in forest planning. Canadian Journal of Forest Research, 37(11), 2188–2200. DOI: 10.1139/x07-073
-
Herries, J. (2019). USA Census Diversity Index. Retrieved from https://www.arcgis.com/home/item.html?id=2bf88a04f82d499a8a635040ab5e423e
-
Historic Zoning Codes and Maps. (2020). Shelby County, Tennessee, Mayor Lee Harris. Retrieved from https://www.shelbycountytn.gov/3241/Historic-Zoning-Codes-and-Maps
-
Hoyt, H. (1939). The structure and growth of residential neighborhoods in American cities. Washington, D.C.: U.S. Government Printing Office.
-
Hudson, W., & Ramm, C. (1987). Correct Formula of the Kappa Coefficient of Agreement. Photogrammetric Engineering and Remote Sensing, 53, 421–422.
-
Imbinarize. (2020). MathWorks. Retrieved from https://www.mathworks.com/help/images/ref/imbinarize.html#d120e113242
-
IMPUS. (2018). Retrieved from https://www.ipums.org/
-
Instat (2014). Albania commuting from home to work. Tiranë: Albania. Retrieved from http://unstats.un.org/unsd/censuskb20/Attachment505.aspx?AttachmentType=1
-
Jeelani, Z., & Qadir, F. (2018). Cellular automata-based approach for salt-and-pepper noise filtration. Journal of King Saud University - Computer and Information Sciences. https://doi.org/10.1016/J.JKSUCI.2018.12.006
-
Keys-Mathews, L. (2003). Interpreting spatial patterns – A guided analysis of the world at night. Retrieved from https://www.una.edu/geography/lights_night/step_1.htm
-
Kilbridge, M. D., O’Block, R. P., & Teplitz, P. V. (1970). Urban Analysis. Boston: Harvard University.
-
Kim, Y., Kim, E. J., Jang, S., & Kim, D. K. (2021). A comparative analysis of the users of private cars and public transportation for intermodal options under Mobility-as-a-Service in Seoul. Travel Behaviour and Society, 24, 68–80. https://doi.org/10.1016/J.TBS.2021.03.001
-
Klein, N., & Smart, M. (2016). Travel mode choice among same-sex couples. Transportation Research, Part A: Policy and Practice, 90(2016), 1-13. DOI: 10.1016/j.tra.2016.05.009
-
Koomen, E., & van Eck, J. R. (2007). Characterizing urban concentration and land-use diversity in simulations of future land use. The Annals of Regional Science, 42(1), 123–140. DOI: 10.1007/s00168-007-0141-7
-
Kramer, O. (2017). Genetic Algorithm Essentials. Springer International Publishing AG 2017. https://doi.org/10.1007/978-3-319-52156-5
-
Krzyzanowski, M., Kuna-Dibbert, B., & Schneider, J. (2005). Health effects of transport-related air pollution. Denmark: World Health Organization. Retrieved from http://www.euro.who.int/__data/assets/pdf_file/0006/74715/E86650.pdf
-
Kuzmyak, J. R. (2012). Land use and traffic congestion. Arizona Department of Transportation Research Center. Retrieved from https://repository.asu.edu/attachments/108918/content/Land%20Use%20and%20Traffic%20Congestion.pdf
-
KYOVA Interstate Planning Commission. (2013). 2040 Metropolitan Transportation Plan: chapter 8 land use considerations. Huntington: WV. Retrieved from http://www.kyovaipc.org/2040%20MTP%20Chapter%208%20Land%20Use%20Considerations.pdf
-
Land cover data. (2020). MRLC. Retrieved from https://www.mrlc.gov/data?f%5B0%5D=category%3Aland
-
Landis, J. R., & Koch, G. G. (1977). The Measurement of Observer Agreement for Categorical Data. Biometrics, 33(1), 159. https://doi.org/10.2307/2529310
-
Large cities ranking. (2017). Retrieved from http://www.newgeography.com/content/0030-large-cities-ranking
-
Li, X., & Yeh, A. G. (2000). Modelling sustainable urban development by the integration of constrained cellular automata and GIS. International Journal of Geographical Information Sciences, 14(2), 131–152. DOI: 10.1080/136588100240886
-
Li, X., & Yeh, A. G. (2001). Calibration of cellular automata by using neural networks for the simulation of complex urban systems. Environment and Planning A, 33, 1445–1462. https://doi.org/10.1068/a33210
-
Li, X., Lin, J., Chen, Y., Liu, X., & Ai, B. (2013). Calibrating cellular automata based on landscape metrics by using genetic algorithms. International Journal of Geographical Information Science, 27(3), 594–613. https://doi.org/10.1080/13658816.2012.698391
-
Li, X., Tian, X., & Li, X. (2016). Multi-mode choice behavior for passenger in a comprehensive transportation corridor. Procedia Engineering, 137 (2016), 849 – 857
-
Liao, J., Tang, L., Shao, G., Su, X., Chen, D., & Xu, T. (2016). Incorporation of extended neighborhood mechanisms and its impact on urban land-use cellular automata simulations. Environmental Modelling & Software, 75, 163–175. https://doi.org/10.1016/J.ENVSOFT.2015.10.014
-
Litman, T. (2017). Evaluating active transport benefits and costs: a guide to valuing walking and cycling improvements and encouragement programs. Canada: Victoria Transport Policy Institute. Retrieved from www.vtpi.org
-
Litman, T. (2019). Land Use Impacts on Transport: How Land Use Factors Affect Travel Behavior. Victoria Transport Policy Institute. Canada: Victoria. Transport Policy Institute. Retrieved from http://www.vtpi.org/landtravel.pdf
-
Liu, X., Hu, G., Ai, B., Li, X., Tian, G., Chen, Y., & Li, S. (2017). Simulating urban dynamics in China using a gradient cellular automata model based on S-shaped curve evolution characteristics. International Journal of Geographical Information Science, 2017. DOI: 10.1080/13658816.2017.1376065
-
Liu, Y. (2009). Modelling Urban Environment with Geographical Information Systems and Cellular Automata. Boca Raton, Fl.: CRC Press Taylor & Francis Group. ISBN 9781420059892
-
Lu, Y., Sun, Guibo, & Sarkar, C. (2018). Commuting Mode Choice in a High-Density City: Do Land-Use Density and Diversity Matter in Hong Kong?. Environmental Research and Public Health, 218(15), 920-932
-
Mackenbach, J. D., Randal, E., Zhao, P., & Howden-Chapman, P. (2016). The Influence of Urban Land-Use and Public Transport Facilities on Active Commuting in Wellington, New Zealand: Active Transport Forecasting Using the WILUTE Model. Sustainability, 8(3), 242. DOI: https://doi.org/10.3390/su8030242
-
Maithani, S. (2010). Application of cellular automata and GIS techniques in urban growth modelling: A new perspective. Institute of Town Planners, India Journal, 7(1), 36–49. Retrieved from http://www.itpi.org.in/uploads/journalfiles/jan3_10.pdf
-
Makers of American Botany. (2017). Rhodora, 64(758), 186-190. Retrieved from http://www.jstor.org/stable/23306543
-
Mäki-Opas, T. E., Borodulin, K., & Valkeinen, H. (2016). The contribution of travel-related urban zones, cycling and pedestrian networks and green space to commuting physical activity among adults – a cross-sectional population-based study using geographical information systems. BMC Public Health, 2016(16). DOI: 10.1186/s12889-016-3264-x
-
Map Cruzin. (2020). Retrieved from https://mapcruzin.com/
-
Mathey, A. H., Krcmar, E., Dragicevic, S., & Vertinsky, I. (2008). An object-oriented cellular automata model for forest planning problems. Ecological Modelling, 212(3-4), 359–371. DOI: 10.1016/j.ecolmodel.2007.11.003
-
MathWorks. (2017). MatLab R2017. [Computer software]. Sunnyvale, CA: MathWorks
-
MathWorks. (2018). How the Genetic Algorithm Works. Retrieved from https://www.mathworks.com/help/gads/how-the-genetic-algorithm-works.html
-
MathWorks. (2020). Vectorization. Retrieved from https://www.mathworks.com/help/matlab/matlab_prog/vectorization.html?s_tid=srchtitle
-
Matlab. (2020). Retrieved from https://www.mathworks.com/products/matlab.html
-
McCormack, G. R., Koohsari, M. J., Oka, K., Friedenreich, C. M., Blackstaffe, A., Alaniz, F. U., & Farkas, B. (2019). Differences in transportation and leisure physical activity by neighborhood design controlling for residential choice. Journal of Sport and Health Science, 8(6), 532–539. https://doi.org/10.1016/J.JSHS.2019.05.004
-
McKenzie, B. (2014). Modes Less Traveled—Bicycling and Walking to Work in the United States: 2008–2012. American Community Survey Reports. Economic and Statistics Administration, USA. Retrieved from https://www2.census.gov/library/publications/2014/acs/acs-25.pdf
-
McKenzie, B. (2015). Who Drives to Work? Commuting by Automobile in the United States:2013. American Community Survey Reports. Economic and Statistics Administration, USA. Retrieved from https://www.census.gov/content/dam/Census/library/publications/2015/acs/acs-32.pdf
-
McLeod, K. (2017). Where we ride: Analysis of bicycle commuting in American cities. American community survey data report. Retrieved from https://bikeleague.org/sites/default/files/Where_We_Ride_2017_KM_0.pdf
-
McMichael, A., Hales, S., & Woodruff, R. (2006). Climate change and human health: present and future risks. The Lancet, 367(9513), 859–869
-
Meira, L., Alves, M., Brasileiro, A., & Oliveira de Andrade, M. (2014). An influência da qualidade do transporte público na rotina acadêmica. O caso da Universidade Federal de Pernambuco.
-
Microsoft Excel. (2020). Retrieved from https://products.office.com/en-us/excel
-
Mohammady, S., & Delavar, M. R. (2016). Urban sprawl assessment and modeling using landsat images and GIS. Modeling Earth Systems and Environment, 2(3), 155. https://doi.org/10.1007/s40808-016-0209-4
-
Mohammed, M. A., Naji, T. A., & Abduljabbar, H., M. (2019). The effect of the activation functions on the classification accuracy of satellite image by artificial neural network. Energy Procedia, 157 (2019). 164–170. DOI: 10.1016/j.egypro.2018.11.177
-
Momeni E., Antipova, A. (2022a). The Kappa coefficient is still alive.
-
Momeni E., Antipova, A. (2022b). A micro-level analysis of commuting and urban land using the Simpson’s Index and Socio-Demographic Factors.
-
Momeni, E., & Antipova, A. (2020). Pattern‐based calibration of cellular automata by genetic algorithm and Shannon relative entropy. Transactions in GIS, 24(6), 1447–1463. https://doi.org/https://doi.org/10.1111/tgis.12646
-
Momeni, E., Fard, F. S. N., Haghi, H. (2018). Accuracy Assessment of GeoEye-1 Satellite Images for Updating Large-Scale Maps in Iran. Journal of Geography & Natural Disasters, 8(1): 219. DOI: 10.4172/2167-0587.1000219. Retrieved from https://www.longdom.org/open-access/accuracy-assessment-of-geoeye1-satellite-images-for-updating-largescale-maps-in-iran-2167-0587-1000221.pdf
-
Momeni, E., Sahebi, M. R., & Mohammadzadeh, A. (2020). Classification of high-resolution satellite images using fuzzy logics into decision tree. Malaysian Journal of Geosciences (MJG), 4(1), 07-12. DOI: http://doi.org/10.26480/mjg.01.2020.07.12. Retrieved from https://myjgeosc.com/archives/1mjg2020/1mjg2020-07-12.pdf
-
MRLC. (2021). Retrieved from https://www.mrlc.gov/index.php
-
MRLC. (2019). Land cover Data. Retrieved from https://www.mrlc.gov/data?f%5B0%5D=category%3Aland%20cover
-
Mustafa, A., Heppenstall, A., Omrani, H., Saadi, I., Cools, M., & Teller, J. (2018). Modelling built-up expansion and densification with multinomial logistic regression, cellular automata and genetic algorithm. Computers, Environment and Urban Systems. 67 (2018), 147-156. DOI: https://doi.org/10.1016/j.compenvurbsys.2017.09.009
-
Naghibi, F., & Delavar, M. (2016). Discovery of Transition Rules for Cellular Automata Using Artificial Bee Colony and Particle Swarm Optimization Algorithms in Urban Growth Modeling. ISPRS International Journal of Geo-Information, 5(12), 241. https://doi.org/10.3390/ijgi5120241
-
Naghibi, F., Delavar, M. R., & Pijanowski, B. (2016). Urban Growth Modeling using Cellular Automata with Multi-Temporal Remote Sensing Images Calibrated by the Artificial Bee Colony Optimization Algorithm. Sensors (Basel), 16(12). PII: E2122.
-
Nasri, A., & Zhang, L. (2019). How Urban Form Characteristics at Both Trip Ends Influence Mode Choice: Evidence from TOD vs. Non-TOD Zones of Washington, D.C. Metropolitan Area. Sustainability, 2019(11). DOI:10.3390/su11123403
-
National Land Cover Database (NLCD). (2017). Retrieved from https://www.mrlc.gov/index.php
-
Neumann, J. V., & Burks, A. W. (1966). Theory of self-reproducing automata. Retrieved from https://archive.org/details/theoryofselfrepr00vonn_0/page/n9
-
Newland, C. P., Maier, H. R., Newman, J. P., van Delden, H., & Zecchin, A. C. (2015). Relationships Between Cellular Automata Based Land Use Models Parameters and Spatial Metrics: Enhancing Understanding in a Calibration Context. Cupum 2015, 1-24
-
Newland, C. P. , Maier, H. R., Zecchin, A. C., Newman, J. P., & van Delden, H. (2018). Multi-objective optimisation framework for calibration of cellular automata land-use models. Environmental Modelling & Software, 100 (2018), 175-200. DOI: 10.1016/j.envsoft.2017.11.012
-
NOAA. (2017). What is the difference between land cover and land use?. Retrieved from http://oceanservice.noaa.gov/facts/lclu.html
-
Office Excel (2016) [Computer software]. Redmond, WA: Microsoft.
-
Osama, A., Sayed, T., & Bigazzi, A. Y. (2017). Models for estimating zone-level bike kilometers traveled using a bike network, land use, and road facility variables. Transportation Research, Part A: Policy and Practice, 96(2017), 14-28. DOI: 10.1016/j.tra.2016.11.016
-
Owen, N., Cerin, E., & Leslie, E. (2007). Neighborhood walkability and the walking behavior of Australian adults. American Journal of Preventive Medicine, 33(5), 387-395. DOI: 10.1016/j.amepre.2007.07.025
-
Padovani, D., Neto, J. J., & Cereda, P. R. (2018). Modeling Pedestrian Dynamics with Adaptive Cellular Automata. Procedia Computer Science, 130, 1120–1127. https://doi.org/10.1016/j.procs.2018.04.165
-
Panter, J., Griffin, S., Jones, A., Mackett, R., & Ogilvie, D. (2011). Correlates of time spent walking and cycling to and from work: baseline results from the commuting and health in Cambridge study. International Journal of Behavioral Nutrition and Physical Activity, 8(124), 1-13. DOI: 10.1186/1479-5868-8-124
-
Pontius, R. G. (2000). Quantification Error Versus Location Error in Comparison of Categorical Maps. Photogrammetric Engineering & Remote Sensing, 66(8), 1011–1016.
-
Pontius, R. G., & Millones, M. (2011). Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment. International Journal of Remote Sensing, 32(15), 4407–4429. https://doi.org/10.1080/01431161.2011.552923
-
Powers, D. M. W. (2011). Evaluation: from Precision, Recall and F-measure to ROC, Informedness, Markedness and Correlation. Journal of Machine Learning Technologies, 2(1), 37-63. ISSN: 2229-399X. Retrieved from https://www.semanticscholar.org/paper/Evaluation%3A-from-Precision%2C-Recall-and-F-measure-to-Powers/7693cafd6f29623f61d66f031cadd60b6ce827d7
-
Quintero, P., Diaz, G., & Moreno, E. (2016). Trip generation by transportation mode of private school, semi-private and public. A case study in Merida-Venezuela. Transportation Research Procedia, 18(2016), 73-79. DOI: 10.1016/j.trpro.2016.12.010
-
Reisi, N. A., Lakmesari, S. H., Mahmoodabadi, M. J., & Hadipour, S. (2019). Optimum fuzzy control of human immunodeficiency virus type1 using an imperialist competitive algorithm. Informatics in Medicine Unlocked, 16(September), 100241. https://doi.org/10.1016/j.imu.2019.100241
-
Rienow, A. (2016). The Future of Central European Cities – Optimization of a Cellular Automaton for the Spatially Explicit Prediction of Urban Sprawl. DOI: 10.5772/62424. Retrieved from https://www.intechopen.com/books/optimization-algorithms-methods-and-applications/the-future-of-central-european-cities-optimization-of-a-cellular-automaton-for-the-spatially-explici
-
Rocchini, D., Delucchi, L., & Bacaro, G. (2013). Calculating landscape diversity with information-theory based indices: A GRASS GIS solution. Ecological Informatics, 17(2013), 82-93.
-
Roghair, C. N., & Dolloff, C. A. (2013). Application of Diversity Indices and an Index of Biotic Integrity to a Basin Area Stream Survey (BASS ) Fish Dataset Collected on the Ouachita National Forest ,1990-2011. United States Department of Agriculture Forest Service. Retrieved from https://www.srs.fs.usda.gov/catt/pdf/ar/ONF_BASS_diversity_20130823.pdf
-
Roodposhti, M. S., Aryal, J., & Bryan, B. A. (2019). A novel algorithm for calculating transition potential in cellular automata models of land-use/cover change. Environmental Modelling and Software, 112(April 2018), 70–81. https://doi.org/10.1016/j.envsoft.2018.10.006
-
Roodposhti, M. S., Hewitt, R. J., & Bryan, B. A. (2020). Towards automatic calibration of neighborhood influence in cellular automata land-use models. Computers, Environment and Urban Systems, 79 (2020). https://doi.org/10.1016/j.compenvurbsys.2019.101416
-
Rossiter, D. G. (2014). Technical Note: Statistical methods for accuracy assesment of classified thematic maps. GeoInformation Science, 1–46. Retrieved from http://www.itc.nl/personal/rossiter/teach/R/R_ac.pdf
-
Russel, M. (2015). Phoenix voters approve a plan to raise money for transportation; vastly expand the city’s light rail and bus networks. Retrieved from http://t4america.org/2015/08/26/phoenix-voters-approve-a-plan-to-raise-money-for-transportation-vastly-expand-the-citys-light-rail-and-bus-networks/
-
Sallis, J., Saelens, B., Frank, L., Conway, T., Slymen, D., & Cain, K. (2009). Neighborhood built environment and income: examining multiple health outcomes. Social Science & Medicine, 38(7), 1285-1293. DOI: 10.1016/j.socscimed.2009.01.017
-
Saris, C., Kremers, S., Assema, P. V., Hoefnagels, C., Droomers, M., & De Vries, N. (2013). What moves them? Active transport among inhabitants of Dutch deprived districts. Journal of Obesity, 2013 (2013). DOI: 10.1155/2013/153973
-
Sarkar, P. P., & Mallikarjuna, C. (2013). Effect of Land Use on Travel Behaviour: A Case Study of Agartala City. Procedia - Social and Behavioral Sciences, 104(2013), 533-542. DOI: 10.1016/j.sbspro.2013.11.147
-
Satimagingcorp (2022). Retrieved from https://www.satimagingcorp.com/
-
Schiff, J. L. (2006). Introduction to Cellular Automata. In Seminar “Organic Computing.” https://doi.org/10.1007/978-1-84996-217-9_1
-
Schmitt, A. (2018). Only a Few American Cities Are Growing Transit Ridership — Here’s What They’re Doing Right. Retrieved from https://usa.streetsblog.org/2018/03/23/only-a-few-american-cities-are-growing-transit-ridership-heres-what-theyre-doing-right/
-
Sertel, E., Topaloglu, R. H., Sallı, B., Algan, I. Y., & Aksu, G. A. (2018). Comparison of Landscape Metrics for Three Different Level Land Cover/Land Use Maps. International Journal of Geo-Informatics.
-
Shan, J., Alkheder, S., & Wang, J. (2008). Genetic Algorithms for the Calibration of Cellular Automata Urban Growth Modeling. Photogrammetric Engineering & Remote Sensing, 74(10), 1267–1277. Retrieved from https://pdfs.semanticscholar.org/a0c5/72559c92fbfc1a3794a1b041b09ba6b7e0b2.pdf
-
Shelby County Government. (2019). Annexations and De-Annexations. Retrieved from https://www.shelbycountytn.gov/2954/Annexations
-
Sicre, M. C., Fieuzal, R., & Baup, F. (2020). Contribution of multispectral (optical and radar) satellite images to the classification of agricultural surfaces. International Journal of Applied Earth Observation and Geoinformation, 84(2020), 101972. DOI: https://doi.org/10.1016/j.jag.2019.101972
-
Siddiqui, A., Siddiqui, A., Maithani, S., Jha, A. K., Kumar, P., & Srivastav, S. K. (2018). Urban growth dynamics of an Indian metropolitan using CA Markov and Logistic Regression. Egyptian Journal of Remote Sensing and Space Science, 21(3), 229–236. https://doi.org/10.1016/j.ejrs.2017.11.006
-
Sidiropoulos, E., & Fotakis, D. (2011). Cellular Automata: Simplicity Behind Complexity. Rijeka, Croatia: INTECH Scientific Publishing. DOI: 10.5772/657
-
Silva, E. A., & Clarke, K. C. (2002). Calibration of the SLEUTH urban growth model for Lisbon and Porto, Portugal. Computers, Environment and Urban Systems, 26(6), 525–552. https://doi.org/10.1016/S0198-9715(01)00014-X
-
Soares-Filho, B. S., & Coutinho, G. (2002). DINAMICA: A Stochastic Cellular Automata Model Designed to Simulate the Landscape Dynamics in an Amazonian Colonization Frontier. Ecological Modeling, 154(2002), 217–235. PII: S0304-3800(02)00059-5
-
Strange, N., Meilby, H., & Bogetoft, P. (2001). Land use optimization using self-organizing algorithms. Natural Resource Modeling, 14(4), 541–574. DOI: https://doi.org/10.1111/j.1939-7445.2001.tb00073.x
-
Syam, A., Khan, A., & Reeves, D. (2012). Demographics do matter: An analysis of people’s travel behavior of different ethnic groups in Auckland. WIT Transactions on the Built Environment, 128(2012), 513 - 525. DOI: 10.2495/UT120441
-
TDOT. (2016). TDOT 25-Year Long-Range Transportation Policy Plan Mobility Policy Paper. TN: TDOT Department of Transportation. Retrieved from: https://www.tn.gov/content/dam/tn/tdot/documents/Mobility_022316.pdf
-
Tennessee Land Area County Rank. (2019). Retrieved from http://www.usa.com/rank/tennessee-state--land-area--county-rank.htm
-
The World Bank. (2019). World Bank Country and Lending Groups. Retrieved from https://datahelpdesk.worldbank.org/knowledgebase/articles/906519#High_income
-
Thern, E., Forss, K., Jogréus, C., & Stjernberg, L. (2015). Factors associated with active commuting among parents-to-be in Karlskrona, Sweden. Scandinavian Journal of Public Health, 43(1), 59-65. DOI: 10.1177/1403494814559119
-
TIGER/Line Shapefiles. (2019). United States Census Bureau. Retrieved from https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html
-
Tiger/line® shapefiles and tiger/line® files. (2017). Retrieved from https://www.census.gov/geo/maps-data/data/tiger-line.html
-
TN GIS. (2020). Retrieved from http://www.tngis.org/administrative-boundaries.htm
-
TNGIS. (2018). Retrieved from http://www.tngis.org/administrative-boundaries.htm
-
Torrens, P. M., & O’Sullivan, D. (2001). Cellular Automata and Urban Simulation: Where Do We Go from Here? Environment and Planning B: Planning and Design, 28(2), 163–168. https://doi.org/10.1068/b2802ed
-
Transport for London. (2012). Understanding the travel needs of London’s diverse communities. Retrieved from http://content.tfl.gov.uk/BAME.pdf
-
Tucker, C. M., Cadotte, M. W., Carvalho, S. B., Davies, T. J., Ferrier, S., Fritz, S. A., … & Mazel, F. (2017). A guide to phylogenetic metrics for conservation, community ecology and macroecology: A guide to phylogenetic metrics for ecology. Biological Reviews, 92, 698–715. https://doi.org/10.1111/brv.12252
-
U. S. Census Bureau. (2018). Geographic Areas Reference Manual (Chapter 11- Census Blocks and Block Groups). Retrieved from: https://www.census.gov/programs-surveys/geography/guidance/geographic-areas-reference-manual.html
-
U.S. Census Bureau. (2017). Retrieved from https://www.census.gov/
-
U.S. Census Bureau. (2019). Quick fact, Shelby County Tennessee. Retrieved from https://www.census.gov/quickfacts/shelbycountytennessee
-
U.S. Census Bureau. (2022). Retrieved from https://www2.census.gov/geo/docs/maps-data/data/gazetteer/counties_list_47.txt
-
U.S. Department of Transportation. (2019). Commute Mode Share. Retrieved from https://www.transportation.gov/mission/health/commute-mode-share
-
U.S. Geographic Summary Data and Boundary Files. (2017). Retrieved from https://www.nhgis.org/
-
Use district map. (1922). The Commercial Appeal. Retrieved from https://www.shelbycountytn.gov/DocumentCenter/View/33944/zoning-5722-p-1
-
Van Eck, J. R., & Koomen, E. (2008). Characterising urban concentration and land-use
-
diversity in simulations of future land use. The Annals of Regional Science, 2008(42), 123-140. DOI 10.1007/s00168-007-0141-7
-
Vehicles and transportation vocabulary word list. (2017). Retrieved from http://www.enchantedlearning.com/wordlist/transportation.shtml
-
Verburg, P. H., de Nijs, T. C. M., van Eck, J. R., Visser, H., & de Jong, K. (2004). A method to analyse neighbourhood characteristics of land use patterns. Computers, Environment and Urban Systems, 28(2004), 667–690. https://doi.org/10.1016/j.compenvurbsys.2003.07.001
-
Vicki, H. W., & McLaughlin, B. S (2013). A survey of motorcyclists (Report 13-UT-019). Blacksburg, Virginia: The Virginia Tech Transportation Institute. Retrieved from https://scholar.lib.vt.edu/VTTI/reports/SurveyMotorcyclists03012013.pdf
-
Votsis, A. (2017). Utilizing a cellular automaton model to explore the influence of coastal flood adaptation strategies on Helsinki’s urbanization patterns. Computers, Environment and Urban Systems, 64, 344–355. https://doi.org/10.1016/J.COMPENVURBSYS.2017.04.005
-
Walker, R. (2001). Urban sprawl and natural areas encroachment: linking land cover change and economic development in the Florida Everglades. Ecological Economics, 37(3), 357–369. DOI: 10.1016/S0921-8009(01)00178-1
-
Walker, R., Solecki, W., & Harwell, C. (1997). Land use dynamics and ecological transition: the case of South Florida. Urban Ecosystems, 1(1), 37–47. DOI: 10.1023/A:1014311116523
-
Weber, A. (1909). Über den Standort der Industrien. Tübingen: Reine Theorie des Standort. Retrieved from https://archive.org/details/ueberdenstandort00webeuoft/page/n11
-
Wheeler, S., & Beatley, T. (Ed. 3). (2014). The sustainable urban development. UK: Routledge
-
White, R., & Engelen, G. (1997). Cellular automata as the basis of integrated dynamic regional modelling. Environment and Planning B: Planning and Design, 24(2), 235–246. https://doi.org/10.1068/b240235
-
White, R., Engelen, G., & Uljee, I. (1997). The use of constrained cellular automata for high-resolution modelling of urban land-use dynamics. Environment and Planning B: Planning and Design, 24(3), 323–343. Retrieved from https://ideas.repec.org/a/pio/envirb/v24y1997i3p323-343.html
-
Williams, E. F. I. (1968). Early Memphis and its river rivals.
-
Wolfram, S. (1984). Cellular automata as models of complexity. Nature, 311(5985), 419-424. Retrieved from https://www.stephenwolfram.com/publications/academic/cellular-automata-models-complexity.pdf
-
Woodcock, J., Edwards, P., & Tonne, A. (2009). Public health benefits of strategies to reduce greenhouse-gas emissions: urban land transport. THE LANCET, 374(9705), 1930-1943. DOI: 10.1016/S0140-6736(09)61714-1
-
Wu, J., & Smithwick, E. A. H. (2016). Landscape Fragmentation as a Risk Factor for Buruli Ulcer Disease in Ghana. Am. J. Trop. Med. Hyg., 95(1), 2016, pp. 63–69 doi:10.4269/ajtmh.15-0647. At: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4944711/pdf/tropmed-95-63.pdf
-
Xia, C., Wang, H., Zhang, A., & Zhang, W. (2018). A high-performance cellular automata model for urban simulation based on vectorization and parallel computing technology. International journal of geographical information science, 32(2), 399-424. https://doi.org/10.1080/13658816.2017.1390118
-
Yang, L., Jin, S., Danielson, P., Homer, C., Gass, L., Bender, S. M., … & Xian, G. (2018). A new generation of the United States National Land Cover Database: Requirements, research priorities, design, and implementation strategies. ISPRS Journal of Photogrammetry and Remote Sensing, 146(May), 108–123. https://doi.org/10.1016/j.isprsjprs.2018.09.006
-
Yeh, A., & Xia, L. (2001). Measurement and Monitoring of Urban Sprawl in a Rapidly Growing Region Using Entropy. Photogrammetric Engineering and Remote Sensing, 67(1), 83–90.
-
Yin, Z., & Gao, Q. (2019). A novel imperialist competitive algorithm for scheme configuration rules extraction of product service system. Procedia CIRP, 80, 762–767. https://doi.org/10.1016/j.procir.2019.01.103
-
Zhu, Z., Li, Z., Chen, H., Liu, Y., & Zeng, J. (2017). Subjective well-being in China: how much does commuting matter?. Transportation, 46, 1505-1524. https://doi.org/10.1007/s11116-017-9848-1